Summer 2022 GCSE Maths Higher: Formula You Will Be Given

Probability

Where P(A) is the probability of outcome Aand P(B) is the probability of outcome B: P(A or B) = P(A) + P(B) - P(A and B)P(A and B) = P(A given B)P(B)

Perimeter, area and volume

Where *a* and *b* are the lengths of the parallel sides and *h* is their perpendicular separation: Area of a trapezium = $\frac{1}{2}(a + b)h$

Volume of a prism = area of cross section × length

Where *r* is the radius and *d* is the diameter: Circumference of a circle = $2\pi r = \pi d$ Area of a circle = πr^2

These are given in relevant questions.

Where *r* is the radius of a sphere or cone, *l* is the slant height of a cone and *h* is the perpendicular height of a cone: Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

These are given in relevant questions.

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the specific position when t = 0 and *t* is time taken:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Pythagoras' Theorem and Trigonometry

Compound interest

Where P is the principal amount, r is the interest rate over a given period and n is number of times that the interest is compounded:

Total accrued = $P(1 + \frac{r}{100})^n$

Quadratic formulae

The solution of $ax^2 + bx + c = 0$ where $a \neq 0$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:

$$a^2 + b^2 = c^2$$

In any right-angled triangle ABC where *a*, *b* and *c* are the length of the sides and *c* is the hypotenuse:

 $\sin A = \frac{a}{c}$ $\cos A = \frac{b}{c}$ $\tan A = \frac{a}{b}$

In any triangle ABC where *a*, *b* and *c* are the length of the sides:

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ cosine rule: $a^2 = b^2 + c^2 - 2bc\cos A$ area of a triangle: $\frac{1}{2}ab\sin C$

Summer 2022 GCSE Maths Higher: Formula You Need To Know

Perimeter, area and volume

Where b is the base and h is the perpendicular height:

```
Area of a rectangle = bh
```

```
Area of a triangle = \frac{1}{2}bh
```

Area of a parallelogram = *bh*

Where l is the length of a cuboid, w is the width of a cuboid and h is the height:

Volume of a cuboid = *lwh*

Where r is the radius of a cylinder and h is the height:

Volume of a cylinder = $\pi r^2 h$

Where a is the area of the base and h is the perpendicular height:

Volume of a pyramid = $\frac{1}{3}ah$

Compound measures

Speed	$d = \frac{\text{distance}}{\text{time}}$			
Densi	$ty = \frac{mass}{volume}$			
Press	ure = <u>force</u> area			

Exact values of trigonometric functions

θ	0°	30°	45°	60°	90°
sinθ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	<u>1</u> 2	0
tan heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined